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BASIC CONCEPTS IN THE THEORY OF SEEPAGE
OF HOMOGENEOUS LIQUIDS

IN FISSURED ROCKS [STRATA]

The modern theory of seepage infiltration is based on the concept of

a porous medium consisting of impermeable grains separated by pore
spaces. Comparison of the results of theoretical and laboratory invest-

igations of non-steady-state flow of liquids with data for strata under
natural conditions leads to the conclusion that current concepts of a
porous medium are inadequate. In all natural strata. the development of

some degree of fissuring is a characteristic feature. The description of
non-steady-state flow of liquids in fissured strata by means of the

usual equations of infiltration theory can lead, in some cases, to con-
flicting conclusions of qualitative nature.

At first glance, it appears that non-steady-state seepage in fissured
rocks can be studied by assuming a system of fissures, which are regular

to some extent, in the stratum. Apparently for studying seepage in

fissured rocks, this method is not promising. Even if it were possible

to overcome the enormous mathematical difficulties involved in solving

problems of non-steady-state flow in strata with a system of fissures of
a sufficiently general type, it is not possible to determine the con-
figuration of this system with any degree of reliability. Information ob-
tained in the analysis of cores - specimens of the rock obtained by drill-

ing from the surface - gives very incomplete data on the fissure system.

The position is to some extent similar to that which occurs in investigat-

ing the flow of a liquid in an ordinary porous medium - even if it were

possible to overcome all the difficulties Involved in the integration of

the equations of motion of a viscous liquid in the pore spaces, the
method would not be suitable for investigating seepage, since the pore

configuration remains unknown. Various models of a porous medium, which
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are based on one or another type of arrangement of the system of pores

and grains and on the study of the motion of the liquid in such systems
(ideal soil, fictitious soil, etc. (1 1). Proved suitable only for the
qualitative investigation of seepage phenomena. Soepage theory has

followed the trend which is characteristic of the mechanics of continuous
media generally, namely. the introduction of much characteristics of the

media and flow (porosity, permeability, pressure. seepage velocity, etc.)

and the formulation of basic laws in terms of these mean characteristics.

Such an approach, applied irrespective of whether or not the system

of fissures is regular in the natural stratum, also proved most advan-

tageous in investigating seepage in fissured rocks.

In this paper, the basic concepts of the motion of liquids in fissured

rocks are presented. Mean-characteristics are introduced, whereby the

averaging is carried out on a scale which is large compared to the

dimensions of the individual blocks. The difference between the present

*scheme and the more usual scheme of seepage in a porous medium consists

in the introduction at each point in space of two liquid pressures -

liquid pressure In the pores and pressure of the liquid in the fissures

a. and in taking into consideration the transfer of liquid between the

fissures and the pores. Under certain assumptions, an expression is ob-

tained for the intensity of this transfer. The basic equation of the

seepage of a liquid in a fissured rock and the same general equations of
the seepage of liquid in a porous medium with a double porosity are de-
rived. These equations will obviously contain, as a particular case, the

equations for the seepage of a liquid in an ordinary porous medium; in

the paper an evaluation is made which indicates for which cases the latter

equations are valid and when the more accurate expressions given in this

paper have to be used. The formulation of the basic boundary-value prob-

lems for seepage equations in fissured rocks is considered. Some

characteristic features of non-steady-state seepage in fissured rocks are

discussed, particularly the possibility of the occurrence, under certain

conditions, of a pressure jump [discontinuity I within the system and at

the boundaries, similar to the infiltration gap in non-pressure seep-

age [2 ]. Conditions at jumps are derived, and the features pertaining

to the formulation of boundary-value problems in the presence of jumps

are pointed out. Solutions are given of certain specific problems of non-
steady-state seepage in fissured rocks.

1. Basic physical concepts. A fissured rock consists of pores
and permeable blocks, generally speaking blocks separated from each other

by a system of fissures (Fig. 1). The dimensions of the blocks will vary
for the various rocks within wide limits, depending on the extent to
which fissures are developed in the rock. The widths of the fissures are
considerably greater than the characteristic dimensions of the pores, so
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that the permeability of the fissure system considerably exceeds the
permeability of the system of pores in
the individual blocks. At the same time,

been published in t3-9 ]; the paper by Fig. 1.

Pirson [4 ] is of particular interest, since it gives a qualitative de
scription of the structure of a porous medium with double porosity, which
is close to that considered in this paper.

If the system of fissures is sufficiently well developed, the motion
of the liquid in fissured rocks can be investigated by the following
method. Unlike the classical seepage theory, for each point in space, not
one liquid pressure but two, P1 and P2 are introduced. The pressure P1
represents the average pressure of the liquid in the fissures in the in
neighborhood of the given point, while the pressure P2 is the average
pressure of the liquid in the pores in the neighborhood of the given
point. For obtaining reliable averages, the scale of averaging should
include a sufficiently large number of blocks. Therefore, it is neces-
sary to take into consideration that any.infinitely small volume includes
not only a larger number of pores, as is assumed in the classical theory
of seepage, but also that it contains a large number of blocks. This con-
dition permits the use of the method of analysis of infinitesimals in
investigating fissured rocks.

In a similar manner, two velocities of seepage of the liquid can be
defined at each point in space: V1 and V2. Vector V1 of the seepage velo-
city of the liquid along the fissures is determined as follows: the pro-
jection of this vector in some particular direction is equal to the flow
of the liquid through the cross-section of the fissures of a small zone
passing through the given point in a direction perpendicular to the given
direction, divided by the density of the liquid and the total area of
this zone. In the same way, the projection of vector V2, the seepage
velocity of the liquid through the pores in a given direction, will equal
the flow of the liquid through the cross-section-of the blocks of the
small zone mentioned, also divided by the density of the liquid and the
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total area of the zone.

It is a characteristic of fissured rocks that the flow of the liquid
proceeds essentially along the fissures, so that the flow velocity of
the liquid through the blocks is negligibly small as compared to seepage
of liquid along the fissures.

If the boundary between the fissures and the blocks is imagined im-
permeable, the fissured rock can be considered as being a coarse-grained
porous medium in which the fissures play the role of pores and the blocks
play the role of grains. If, furthermore, the fissures are sufficiently
narrow and the velocity of the liquid is sufficiently small, the motion
of the liquid along the fissures will be inertialess and Darcy's Law is
fulfilled:

where is the permeability of the system of fissures and is the vis-
cosity of the liquid. Application of Darcy's Law to seepage along the
system of fissures is not of principal importance; if desired, inertia
of the motion can be taken into account, using thereby a more complicated
nonlinear law.

A characteristic feature of the non-steady-state motion of a liquid
in fissured rocks is the transfer of liquid between the blocks and the
fissures. Therefore, in investigating the seepage of liquids in fissured
rocks it is necessary, in contrast to the classical theory of seepage,
to take into consideration the outflow of liquid from the grains -

blocks into the pores - of the fissures.

The process of transfer of liquid from the pores and the blocks takes,
place essentially under a sufficiently smooth change of pressure, and,
therefore, it can be assumed that this pressure is quasi-stationary, i.e.
it is independent of time explicitly. It is obvious in such a case that
during motion of a homogeneous liquid in the fissures of the rock, the
volume of the liquid v, which flows from the blocks into the fissures
per unit of time and unit of volume of the rock, depends on the follow-
ing: (1) viscosity of the liquid p; (2) pressure drop between the pores
and the fissures p2- pl; and (3) on certain characteristics of the rock,
which can only be geometrical ones, i.e. they may have the dimension of
length, area, volume, etc., or even be dimensionless. On the basis of
dimensional analysis we obtain for v an expression of the type

where a is some new dimensionless characteristic of the fissured rock.
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Thus, for the mass q of the liquid which flows from the pores into the
fissures per unit of time, per unit of rock volume, the following equa-
tion is valid:

where p is the density of the liquid.

It should be pointed out that in a somewhat different form relation
(1.3) was applied for the integral estimate of the flow along the stratum
as a whole

2. Equation of motion of a uniform liquid in fissured
rocks. In accordance with what has been said above, the law of conserv-
ation of mess of liquid in the presence of fissures can be written as
follows:

In view of the smallness of the volume of the fissures, the first
term, which expresses the change in mass of the liquid due to compres-
sion in the fissures and changes in the volume of the fissures in some
element of the rock, is small as compared to the second term, which ex-
presses changes in the mass of the liquid caused by the inflow of the
liquid along the fissures through the boundary of this element. There-
fore, relation (2.1) can be disregarded. Inserting Equation (1.1)
(Darcy's Law) into Equation (2.1), taking into consideration the fact
that the liquid is slightly compressible so that

is the density of the liquid at some standard pressure, for instance,
the initial pressure in the stratum, ( is the coefficient of compress-
ibility of the liquid, is the change in the pressure relative to the
standard pressure), assuming that the medium is homogeneous and neglect-
ing the small higher-order terms, we obtain

Further, the equations of conservation of mass of the liquid which is
present in the pores can be written thus:

Strictly speaking. in Equation (2.4), will not represent the
porosity of the blocka but the ratio of the volume of the pores to
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so that the quantity of liquid which flows into the fissures equals the
quantity of the liquid which flows out of the blocks.

In view of the low permeability of the blocks, the second term of
Equation (2.4), which expresses changes in the mass of the liquid within
the pores in some element of the rock, due to the inflow of liquid along
the pores through the boundaries of the element, can be disregarded as
compared to the first term which represents changes in the mass of the
liquid in the pores due to its expansion, and also to changes in the
volume of the pores. Therefore, Equation (2.4) can be re-written as

(2.5)

Furthermore, the porosity of the blocks m2 in the case of a constant
pressure of the upper strata of the rocks on the roof of the stratum de-
pends, generally speaking, on the pressure of the liquid in the fissures
p and the pressure of the liquid in the pores P2. However, the volume of
the fissures in the rock is considerably smaller than the volume of the
pores. It can be assumed that, in contrast to the liquid located in the
pores, the liquid located in the fissures does not participate in support-
ing the upper strata of the rock formations. Therefore, the influence of
the pressure of the liquid in the fissures P1 on the porosity of the
blocks can be disregarded as compared to the influence of the pressures
of the liquid in the pores and it can be assumed that

(2.6)

where is the coefficient of compressibility of the blocks. Taking
into consideration, also, relations (1.3) and (2.2) and neglecting small
terms of higher order, we obtain

where no is the magnitude of the porosity of the blocks at standard pres-
sure. Equations (2.3) and (2.7) describe the motion of the liquid in

the entire volume of the rock, including the volume of the fissures.
However in view of the small relative volume of the fissures compared
to the relative volume of the pores. m2 can be considered as repre-
senting the porosity of the individual blocks.
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fissured rocks. Eliminating from these equations , we obtain for the
pressure of the liquid in the fissures pi the equation

The coefficient represents the coefficient of piezo-conductivity
the fissured rock; it is interesting that this does not correspond to
the permeability of the system of fissures but to the porosity and
compressibility of the blocks. The coefficient represents a new
specific characteristic of fissured rocks. If tends to zero, it cor-
responds to a reduction of the block dimensions and an increase in the
degree of fissuring, and Equation (2.8) will obviously tend to coincide
with the ordinary equation for seepage of a liquid under elastic condi-
tions.

An approximate estimate of the possible magnitudes of the coefficient
will be made. The dimensionless coefficient a, characterizing the in-

tensity of the liquid transfer between the blocks and fissures, depends
on the permeability of the blocks k2 and the degree of fissuring of the
rock, as a measure of which it is obvious to take the specific surface
of the fissures a, i.e. the surface of the fissures per unit of volume
of the rock. The quantity a has the dimension of the reciprocal of length.
On the basis of dimensional analysis we obtain

From this and Equation (2.8) we obtain

where is the average dimension of a single block (the specific surface
of the fissures is inversely proportional to the average dimension of a
single block). Evaluations show that for various rocks the parameter
will assume values within wide limits - from a few cm to values of the
order of 1010

Determination of the parameter should be carried out by means of
data for the steady-state flow of liquids in fissured rocks. Thus,
natural strata are involved, determination of this parameter should
carried out only on the basis of investigations of the behavior of the
stratum under non-steady-state conditions and not on the basis of test.
carried out on rock specimens brought to the surface.

3. Equations of notion of a homogeneous liquid in a medium with doubly
porosity. The system of equations (2.3), (2.7) represents a particular
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case of the system of equations of motion of a homogeneous liquid in a
medium with double porosity. In some cases the latter equations may be
of interest and, therefore, we will deal briefly with their derivation.

The motion of a uniform liquid in a double porous medium will be
considered: the first porous medium consists of relatively wide pores of
the first order - fissures and blocks; the relative volume of the pores
of the first order, the porosity of the first order, equals The
blocks in themselves are porous consisting of grains which are separated
by fine pores of the second order; together they form the second porous
medium. The porosity of this medium - the porosity of the second order -
is designated by It is pointed out that, generally speaking, can-
not be considered equal to the porosity of the blocks, since repre-

sents the ratio of the volume of the second-order pores to the total
volume of the elements of the rock in which a known space is occupied by
the fissures - pores of the first order. In the case where the upper
strata exert a constant pressure on the roof of the stratum, both poro-
sities, a, and , will depend on the pressures of the liquid in the
pores of the first and second order, and so that

are positive constant coefficients.

The equations for conservation of mass of the liquid for both media
are of the form (2.1) and (2.4). respectively. Assuming that the flow of
the liquid in the first medium (and thus also in the second medium) i s
inertialess the Darcy law for both media can be written as

where , is the porosity of the system of pores of the first order and
k2 the porosity of the system of pores of the second order.

By inserting into Equations (2.1) and (2.4) relations (3.2), Expres-
sion (1.3) for the liquid flow from one medium to the other (which will
obviously remain valid even in this more general case), relation (2.2)
for the density of the liquid and relation (3.1) for the (differentials
of the porosity), and discarding small quantities of higher order for
the pressures of the liquid in both media and the following
system of equations is obtained
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where and are the values of the first and second order porosity

standard pressure

If the pressure P2 changes, say decreases, at a constant pressure of

the upper strata on the roof the porosity of the first order will in
crease on the one hand, as a result of the compression of the blocks

and, on the other hand, it will decrease as a result of compression by
the overlying strata. These effects will apparently compensate each other

to some extent. The situation is similar for the second-order porosity

in the case of a change in the pressure p1 . It is, therefore, advis-

able to consider the model of the double porosity of the medium for which

the porosity of each order depends only on the appropriate pressure, so

that the coefficient and in Equation (3. 1) can be considered

and the appropriate terms in Equation (3.1) can be disregarded.

Equations (3.3) for such a model of a porous medium with double poro-

sity will be of the form similar to the equations for beat transfer in a
heterogeneous medium considered by Rubinshtein

Disregarding in Equations (3.3) the terms representing a change in

the mass of the liquid due to the compressibility of the first medium
and the compression of the liquid in the pores of the first order, and

the changes in the mass of the liquid as a result of the seepage inflow
along the pores of the second order, we again obtain the equations of

motion of a liquid in a fissured porous medium (2.3) and (2.7).

4. Basic boundary-value problems of the theory of non-
steady-state seepage in fissured rocks. Equation (2.8), to which
corresponds the pressure distribution of the liquid in the pores can,

be written as

where is the total effect of compressibility equalling
This form of writing the basic equation indicates that motion in the
system of fissures can be considered as the motion of a liquid in a

porous medium with a total compressibility coefficient 0, and the ex-

pression for the velocity of seepage of the liquid can be written as
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The initial and the boundary conditions have to be added to Equation
As in the theory of seepage in a porous medium, the steady-state

initial conditions are of greatest interest in the given case (i.e. the
harmonic initial distributions pl, which satisfy Equation (4.1)). Among
the possible types of boundary conditions the most important are the
following:

1) The pressures p, at the boundary of the rock of volume under con-

sideration are given (first boundary-value problem):

2) At the boundary s the flow of the liquid is given (second boundary-

value problem), the following quantity being given, in accordance with

what was stated above, at the boundary of the surface

is the derivative along the normal to the surface S, and, finally,

3) At the boundary a linear combination of the pressure and the flow
of the liquid, generally speaking with variable coefficients A and B, is
given (mixed problem)

If the initial pressure-distribution is continuous and the boundary
conditions are consistent with the initial ones (i.e. the boundary values
of the initial distribution on approaching the boundary points equal to
the boundary values of the corresponding functions at the initial instant
of time), the solutions of the above-stated boundary-value problems will
be the ordinary classical solutions (4.1) However, if the initial pres-
sure distribution is discontinuous or if the initial and the boundary
conditions are unrelated, then the derived distributions will also be
discontinuous and there is no classical solution for the boundary-value
problems formulated above; it is necessary to seek a generalized solution
in the sense of Sobolev To proceed further it is necessary to de-
rive the conditions at the discontinuities. It is sufficient to consider
the one-dimensional case, since in the neighborhood of the given point
the surface of discontinuity can be considered as being plane. Thus, it
is assumed that within a sufficiently small vicinity on both sides of the
isolated discontinuity surface x - 0 (z is the direction of the normal to
the surface of the discontinuity), the function p, is continuous, has
appropriate continuous derivatives and satisfies the equation
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where as usual the sign designates the difference between the values
of the function on both sides of the discontinuity surface. Since T is
arbitrary and the expression under the integral sign is a continuous
function of time, it follows that the expression under the integral sign
equals zero:

i.e. the condition of continuity at the surface of discontinuity of the
total flow of the liquid was replaced by . To obtain the
second condition, Equation (4.6) is multiplied by and integration is t
carried out over the same region G:
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so that the second condition at the surface of discontinuity is obtained
in the form

(4.11)

For the basic conditions at the surface of discontinuity (4.9) and
(4.11) will change into the condition of continuity of the function and
its derivative along the normal to any surface, i.e. the condition of
absence of discontinuities', which is well known in the theory of heat
conduction and the theory of seepage in a porous medium.

Integrating (4.9) and (4.11), we obtain the conditions at the discon-
in the form

so that the pressure jumps and normal derivative of pressure which occur,
due to the discontinuity or due to inconsistent initial conditions, will
not be eliminated instantaneously as in a porous medium (and as is the
case for jumps in temperature and heat flow in the theory of heat con-
duction) but will decrease in accordance with the law e This pro-
perty is a characteristic qualitative feature of the mathematical de-
scription of non-steady-state flow in fissured rocks, which is comparable
with flow through a porous medium.

5. Some specific problems of non-steady-state flow in
fissured rocks. General qualitative conclusions 1. Non-steady-
state flow of liquid in a gallery. From the literature the importance of
the study of non-steady-state seepage in drainage galleries is well known.
This problem is formulated as follows at the initial instant the pressure
of the liquid in a semi-infinite stratum is constant the
pressure at the boundary suddenly assumes the value differing
from and then remains constant. The problem of determining seepage
flow requires the solution of the equation

In obtaining the second law of conservation in a medium with a vari-
able permeability coefficient it is necessary to multiply both
parts of Equation (4.6) by



1298 BarenblAtt, .P. Zheltov and I.N. Kochina

for the uncoordinated initial and boundary conditions

(the boundary pressure is given immnediately to the left of the boundary
At the initial instant there will be a pressure jump at the

boundary equal to (Po - P ) according to (4.12), at time t this jump
will equal so that the pressure of the liquid immediate.
ly to the right of the boundary will equal

To find the pressure distribution at any desired instant of time t,
the Laplace transform with respect to time t is applied We set
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